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Abstract In recent years, the accuracy of the wind power

prediction has been urgently studied and improved to sat-

isfy the requirements of power system operation. In this

paper, the relevance vector machine (RVM)-based models

are established to predict the wind power and its interval

for a given confidence level. An NWP improvement

module is presented considering the characteristic of NWP

error. Moreover, two parameter optimization algorithms

are applied to further improve the prediction model and to

compare each performance. To take three wind farms in

China as examples, the performance of two RVM-based

models optimized, respectively, by genetic algorithm (GA)

and particle swarm optimization (PSO) are compared with

predictions based on a genetic algorithm–artificial neural

network (GA–ANN) and support vector machine. Results

show that the proposed models have better prediction

accuracy with GA–RVM model and more efficient calcu-

lation with PSO–RVM.

Keywords Wind power interval prediction � NWP

accuracy � Relevance vector machine � Particle

swarm optimization � Genetic algorithm

1 Introduction

With the rapid development of wind energy, the large-scale

integration of wind power brought about apparent negative

impact on the electric power system [1, 2]. Wind power

prediction is one of the most important technologies to

tackle the challenges that large scale wind power integra-

tion brings about to power system. However, it still needs

to be further improved not only in terms of the accuracy but

also the risk assessment.

Statistical wind power forecasting methods have been

widely studied and gained lots of achievement, such as

artificial neural network (ANN) [3–6] and support vector

machine (SVM) [7–9]. ANN could theoretically approxi-

mate any nonlinear function but suffers over-fitting prob-

lem [10]. SVM avoids this problem and improves the

generalization ability with small training samples. How-

ever, there are still some disadvantages of SVM [11]: the

kernel function must satisfy Mercer’s condition; cannot

obtain uncertainty or probabilistic information; support

vectors number increases linearly with the increase of

training sample size.

To overcome above drawbacks, a probabilistic learning

machine is introduced based on Bayesian theory and mar-

ginal likelihood functions that is relevance vector machine

(RVM) [11]. RVM has excellent prediction performance and

could offset main inadequacy of SVM [12–14]. The

approach has been successfully applied in many fields such

as load forecasting and fault classification [15–18].

It is significant to select the model parameters. Cur-

rently, there are many optimization techniques for example

genetic algorithm (GA), particle swarm optimization

(PSO), fuzzy inference system (FIS), fuzzy neural network

(FNN), and wavelet theory. Among the above techniques,

PSO and GA are the most widely used ones in the
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academic community. Ioannis et al. [19] presented an

optimized wind speed forecasting and wind power fore-

casting model based on GA theory. The model improves

the forecasts performance and brings forward the forecasts

time steps from 30 min to 2 h. Change combined ordinary

least square (OLS) and GA to optimize RBF neural net-

work model to predict wind farm output [20]. Pratheepraj

et al. [21] accurately and reliably predicted wind speed and

the power generation of a small-scale wind farm using a

PSO-neural hybrid system. This paper presents the appli-

cation and performance comparison of PSO and GA opti-

mization techniques for RVM-based wind power

forecasting model.

In this paper, the RVM-based forecasting model is

integrated with an numerical weather prediction (NWP)

improvement module and a parameter searching module

considering the forecasting influential factors like NWP

errors and model parameters. PSO and GA are employed to

search the optimal model parameters.

2 Wind farm descriptions

The analysis has been based on the data from three wind

farms in China including mean wind farm output, mean

wind speed collected from the SCADA, and mean wind

speed from a wind measurement system and NWP system.

The installed capacities of these three wind farms are

183 MW (quoted as wind farm 1#), 150 MW (quoted as

wind farm 2#), and 100.5 MW (quoted as wind farm 3#).

All the data were collected at 15 min intervals. The oper-

ational period covers 2010 except for October in wind farm

1#; 2011 year in wind farm 2# and wind farm 3#. Among

the available data, 80 % are considered as candidate train-

ing samples and remaining 20 % are used as test samples. In

this paper, NWP data are taken as the prediction model

inputs involving wind speed, wind direction, atmospheric

pressure, temperature, and relative humidity. Therefore, the

error of NWP has significant impacts on the power pre-

diction accuracy, especially for NWP wind speed.

Figure 1 presents the root mean square error (RMSE) of

the NWP wind speed forecasts, and it shows similar

changing trend along with different seasons. In Fig. 2, the

standard deviation of meteorological parameters was pre-

sented for somewhat quantitative analysis of weather pat-

tern stability. In summer, most of parameters (like wind

speed, pressure, and temperature) are in low variation

which suggests a stable weather pattern except for

humidity showing relatively higher fluctuations because of

frequent rainfall or storm. It is easier to simulate and learn

these stable weather patterns and to make good prediction.

Of course, the accuracy of three groups of NWP data

appears to have slight differences. It is because three wind

farms are located in different parts of China which

undoubtedly have different seasonal characteristics. In

addition, NWP system or model parameters would also

contribute to this performance difference.

3 Principle of relevance vector machine

Given a set of input-target pairs xn; tnf gN
n¼1, assume that

ti = y(xi; w) ? ei, where ei is assumed to be mean-zero

Gaussian with variance r2, and the Kernel function K(x, xi)

has been considered which makes prediction by the function:

y x; wð Þ ¼ wT/ðxÞ ¼
XM

i¼1

wiKðx; xiÞ þ w0; ð1Þ

where /(x) is the vector of basis function;

w = (w1, w2, …, wM) is the weights vector.

Therefore, the probabilistic formulation of RVM Model

is defined as

p tnjxð Þ ¼ N tnjy xnð Þ; r2
� �

; ð2Þ

where N represents a Gaussian distribution over tn with

mean of y(xn) and variance r2.

The likelihood function of whole samples is defined as

follows:

p tjw; r2
� �

¼ 2pr2
� ��N

2 e
� 1

2r2 t�uwk k2
� �

: ð3Þ

To overcome over-fitting in the implementation of

maximum-likelihood estimation for w and r2, constraint on

weights wi was imposed, that is ‘‘prior’’ probability

distribution as follow:

p wjað Þ ¼
YN
i¼0

N wij0; a�1
i

� �
; ð4Þ

where a is the N ? 1 vector termed ‘‘hyperparameters’’.

The posterior probabilities over unknown samples could

be obtained from Bayesian inference.

p w; a; r2jt
� �

¼ p tjw; a; r2ð Þ � p w; a; r2ð Þ
p tð Þ : ð5Þ

Assuming that new test target is t*, new test input x* is

used to make prediction. Then, the distribution of

prediction can be written as

p t�jtð Þ ¼
Z

p t�jw; a; r2
� �

p w; a; r2jt
� �

dwdadr2: ð6Þ

The posterior distribution can consequently be rewritten as

p wjt; a; r2
� �

¼ p tjw; r2ð Þ � p wjað Þ
p tja;r2ð Þ

¼ 2pð Þ�
Nþ1

2

X��� ����1
2

e �1
2

w�lð ÞT
P�1

w�lð Þ
� �

: ð7Þ
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Therefore, the RVM learning process is a search for a,

r2 which achieves by using maximum marginal likelihood

estimation methods as follows:

p tja;r2
� �

¼ ð2pÞ�
N
2 jr2I

þuA�1uTj�
1
2 exp �1

2
tTðr2IþuA�1uTÞ�1

t

� �
:

ð8Þ

a, r2 can be calculated by setting the relevant derivative

of function (7) to zero. It could be obtained by

anew
i ¼ 1� ai

P
ii

l2
i

; ð9Þ

r2
� �new¼ t � /lk k2

N �
P

i 1� ai

P
iið Þ ; ð10Þ

l ¼ r�2
X

uTt; ð11Þ

X
¼ r�2

X
/Tt þ A

	 
�1

; ð12Þ

where li is the ith mean of posterior from Eq. (11);
P

ii is

the ith diagonal element of posterior covariance from

Eq. (12), and computed by a, r2 from current iteration

results; and N indicates the number of sample data points.

When ai becomes extremely large, wi goes to zero because

of constraint by the prior. For wi with small ai, RVM fits the

sample data better. Iteration should continue until a suitably

chosen convergence condition is fulfilled. During the process

of parameter estimation, most of ai ? ? and the corre-

sponding wi = 0. This leads to nonparticipation in the pre-

diction calculation for many terms of the kernel matrix. In

this way the RVM can achieve the desired sparsity that

reduces computational effort.

Iteration proceeds by making predictions based on the

given weight of the posterior distribution which is adjusted

to maximize the values of aMP, rMP
2 . With new inputs x*,

predictions can be calculated by the following equations:

Fig. 1 Accuracy of wind speed from NWP for each month in 3 wind farms

Fig. 2 Standard deviation of monthly weather parameters in 3 wind farms. a Standard deviation of wind speed in 3 wind farms. b Standard

deviation of other weather factors in wind farm 1#

Chin. Sci. Bull. (2014) 59(11):1167–1175 1169
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p t�jt; aMP; r
2
MP

� �
¼
Z

p t�jw; r2
MP

� �
p wjt; aMP; r

2
MP

� �
dw

¼ N t�jy�; r2
�

� �
;

ð13Þ

y� ¼ lTu x�ð Þ; ð14Þ

r2
� ¼ r2

MP þ / x�ð ÞT
X

u x�ð Þ: ð15Þ

4 Wind power interval prediction model

4.1 Model structure

The structure of the RVM-based wind power prediction

model comprises NWP improving, parameters optimizing,

and RVM forecasting.

In NWP improving phase, the measured met mast wind

speed and the raw NWP wind speed are transferred to LS-

based NWP improving module. The revised NWP wind

speed would have higher accuracy than that of the raw NWP

data. Then the improving NWP wind speed and other

weather prediction data (if any) are prepared to go into the

next phase. And then, in parameters optimization phase,

two optimization techniques—PSO and GA—are, respec-

tively, applied to determine the most suitable kernel width

and initial value of the RVM. The performance of these two

techniques would be discussed in the case study. Finally, the

training samples and optimized parameters are transferred

to RVM model in the training and forecasting phase.

4.2 Improvement of NWP accuracy

The weather prediction, especially wind speed forecasts, is

the key factors to wind power prediction accuracy. Cubic

relationship between wind speed and power output means

that even tiny wind speed forecasting error would trigger

very large wind power forecasting error, and there is

inevitable deviation between NWP wind speed and the

actual wind speed. Thus, it is possible to improve the wind

power prediction performance by using improved NWP

data. In this paper, least square method is utilized to

improve raw NWP wind speed aiming at reducing the

systematic errors and errors caused by model defects.

Assume that {xi} is the time series of the raw NWP wind

speed, while {yi} is the measured wind speed in a same

period. The n orders polynomial is used to approximately

mapping the relationship between xi and yi.

yi � f xð Þ ¼ a0 þ a1xþ a2x2 þ � � � þ anxn ¼
Xn

j¼0

ajx
j
i ;

ð16Þ

where S(a0, a1, …, an) denotes the coefficients of

polynomial.

In order to search the optimum coefficients for fitting the

given pairs of data, the quadratic sum of the residual error d
would be adjusted to be the minimum. m is the sample size

and 1 \ i \ m.

min
Xm

i¼1

dið Þ2 ¼ min
Xm

i¼1

f xið Þ � yi½ �2

¼ min
Xm

i¼0

�Xn

j¼0

ajx
j
i � yi

�2

:

ð17Þ

It is thus clear that the quadratic sum of the residual

error is the function of polynomial coefficients ai.

S a0; a1; . . .; anð Þ ¼ h
XN

i¼1

dið Þ2
 !

: ð18Þ

To obtain the S(a0, a1, …, an) when the function of (d)2 is

at its minimal value. The polynomial matrix ofaj is as follows:

oS

oaj

¼ 2
Xn

i¼0

Xn

i¼0

ajx
j
i � yi

 !
� x

j
i ¼ 0;

i ¼ 0; 1; . . .; n; j ¼ 0; 1; . . .;mð Þ;
ð19Þ

mþ 1
Pm

i¼0 xi . . .
Pm

i¼0 xn
iPm

i¼0 xi

Pm
i¼0 x2

i . . .
Pm

i¼0 xnþ1
i

. . . . . . . . . . . .Pm
i¼0 xn

i

Pm
i¼0 xnþ1

i . . .
Pm

i¼0 x2n
i

2
6664

3
7775

a0

a1

. . .

. . .

an

2
666664

3
777775

¼

Pm
i¼0 yiPm

i¼0 xjyi

. . .Pm
i¼0 xn

i yi

2
6664

3
7775:

ð20Þ

4.3 Optimization of model parameters

Due to the significant impact of model parameters on

forecasting accuracy, PSO and GA have been adopted to

search for the optimal kernel width and initial value of

RVM model.

In RVM model, the Gaussian kernel function is adopted

as

K x; xið Þ ¼ exp � x� xik k2

2r2

 !
; ð21Þ

where r is the width of kernel function.

4.3.1 PSO

The applied adaptive function is RMSE. Their speed and

location are updated using following functions:

1170 Chin. Sci. Bull. (2014) 59(11):1167–1175
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vkþ1
i;d ¼ xvk

i;d þ c1randðÞ pbk
i;d � xk

i;d

	 


þ c2 randðÞ gbk
i;d � xk

i;d

	 

;

ð22Þ

xkþ1
i;d ¼ xk

i;d þ vkþ1
i;d ; ð23Þ

where c1 and c2 are learning factors; rand() is the uniform

random number [0,1]; vk
i;d and xk

i;d are the speed and loca-

tion of the ith particles in the kth iteration in d-dimension;

pbk
i;d and gbk

i;d are, respectively, the individual best location

and group best location of the ith particle in d-dimension;

x is the inertial weight factor [22].

In this case, the scale of particle swarm is 30; iteration

number is 200; the learning factors are both 2.05; the

inertial weight factor is within the scope of (0.4, 0.9).

4.3.2 GA

The steps of a GA process contain initialization, fitness

function calculation, selection, crossover, and mutation.

Initialization: GA randomly generates initial model

parameters. The population scale N is generally between 20

and 100.

Fitness function calculation: Fitness function is to

evaluate the individual fitness.

Selection: GA operates roulette algorithm to select the

chromosome of population according to individual fitness.

The winning individuals survive and pass their reproduc-

tive information down to a new population.

Crossover: the chromosomes in every two individuals

are randomly exchanged at crossover probability Pc. Nor-

mally, the scope of crossover probability is (0.6, 1.0).

Mutation: each individual chromosome changes one or

several genes at probability of Pm to keep population

diversity and to improve the searching ability. The scope is

usually (0.005, 0.01).

GA seeks to maximize the fitness of the population by

selecting the fittest individuals. The iteration would not

terminate until the individuals reach their own maximum

fitness. Otherwise GA process would circulate from

‘‘Selection’’ step [23, 24].

In this case, the initial population scale sizepop is 100;

the genetic generation number Ngen is 300; the probabil-

ities of crossover and mutation are Pc = 0.7 and Pm =

0.005, respectively.

4.4 An intuitive explanation

The training samples’ accuracy has a clear relationship

with the accuracy of the wind power deterministic fore-

casting. This motivates us to use the most ‘‘relevant’’

NWPs to predict using a very limited size of training

samples. Moreover, it is possible to obtain the potential

wind power fluctuation interval under a certain confidential

level or nominal coverage rates according to RVM theory.

Or, it is also possible to ‘‘dress’’ every deterministic fore-

casting power with its corresponding forecasting intervals

under different confidential level which is referred as pre-

dictive density, only if various confidential levels are set.

5 Case study

5.1 Evaluation

To evaluate the performance of proposed models, two

RVM-based models optimized by GA and PSO (GA–RVM

and PSO–RVM) are compared with forecasts based on

SVM and an ANN optimized by GA (GA–ANN) in terms

of forecast accuracy, model complexity, and running time.

For comparability, all methods use the same input vari-

ables, training samples, and test samples. Note that SVM

and RVM-based model utilizes monthly samples, while the

GA–ANN trains the models with yearly samples due to its

demand for much larger training data sets.

A frequently used error criterion is adopted for the

comparisons: RMSE as shown in equation in [10]. It can

give a more representative evaluation of the prediction

error over an extended time period.

5.2 Analysis and discussion

A least squares method with three orders polynomial is

applied to correct raw NWP data in order to reduce sys-

tematic error. Mean wind speed is the assessment item of

the proposed module. Data from 1 to 15 in each month are

used as training samples, while 16 to the end of each month

as the test samples. The results show in Fig. 3 that in most

months, the statistic characteristic of NWP data would be

more close to the actual situation.

Figure 4 shows the full-year forecasting accuracy of

SVM, GA–ANN, and RVM-based model. In general,

RMSE of the predictions provided by two RVM-based

models is considerably lower than that of SVM and GA–

ANN. Moreover, the yearly average RMSE of GA–RVM

in three wind farms is less than that of PSO–RVM by about

3.5 %, 6.7 %, and 3.3 %. Meanwhile, the RMSE of GA–

RVM is less than that of SVM by about 24.2 %, 24.2 %,

and 20.1 %. It reveals impressive performance for the

RVM-based models in wind power prediction, especially

the forecasting ability of RVM with GA optimization

technique.

Figures 5, 6, and 7 show the interval forecasting results

at 90 % confidence level on 4 days from different seasons.

The interval forecasting calculates the possible power
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Fig. 3 Correction of NWP wind speed in 3 wind farms. a Results in wind farm 1#. b Results in wind farm 2#. c Results in wind farm 3#

Fig. 4 Comparisons of forecasts accuracy for each month. a Forecasting results in wind farm 1#. b Forecasting results in wind farm 2#.

c Forecasting results in wind farm 3#
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Fig. 5 Interval forecast results in wind farm 1#. a Results on March 25. b Results on September 26. c Results on August 25. d Results on

December 24

Fig. 6 Interval forecast results in wind farm 2#. a Results on January 22. b Results on April 30. c Results on July 27. d Results on November 24
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range at a given confidential level instead of one power

value in deterministic forecasting. If the actual power is

outside of this power range, then the uncertainty analysis is

questionable. Figure 8 draws the proportions of unques-

tionable results in three wind farms. The upper (or lower)

limit reliability means the percentage of the actual power

below (or above) the upper (or lower) limits. The bilateral

limits reliability demonstrates the overall reliability which

shows the percentage of the actual power between the

upper limits and the lower limits. It is clear to see from the

figure that the upper reliability is higher than the lower

reliability. It makes sense because it helps minimize the

allocated reserves, and the overall reliability is around the

nominal 90 % confidence level which validates the pro-

posed model.

As for the intervals of the forecasts, it is reasonable if

the interval is slightly larger than the prediction error,

because it could reflect the prediction risk and help allocate

enough reserves. In three wind farms, there is successively

52 %, 75 %, and 41 % of all forecast intervals in the range

0–20 MW. Only 3.2 %, 4.5 %, and 6.2 % of forecast

intervals are over 60 MW which economically saves

reserves even if the prediction errors are very large. The

proposed model generally covers the prediction error and

gives consideration to risk resistance and economical

operation.

The computational efficiency is measured with three

wind farms in question. The average results are presented

Fig. 7 Interval forecast results in wind farm 3#. a Results on May 25. b Results on August 23. c Results on October 24. d Results on December 18

Fig. 8 Reliability of the uncertainty estimates

Table 1 Comparisons of computational efficiency and vector num-

ber for each model

Training

time (s)

Test

time (s)

Number of

vectors involved

PSO–RVM 15.33 0.66 86.44

GA–RVM 29.16 0.73 90.35

SVM 14.94 0.71 100.12

GA–ANN 384.17 4.18 –

Note: 2.79 GHz processor with 3.12 GB RAM
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in Table 1. Two RVM-based models cost less running time

and have fewer vectors, especially for PSO–RVM model.

It shows efficient preference of PSO for online or ultra-

short-term operation. Besides, it seems that GA sacrifices

some running time for higher accuracy which is advanta-

geous for short-term forecasting.

6 Conclusions

In this paper, wind power interval prediction model is

established based on RVM theory considering NWP

accuracy. There are three wind farms in China used to

validate the superiority of the proposed model and the

parameter optimization techniques in terms of forecasts

accuracy and the running efficiency. An LS-based model is

first applied to improve the raw NWP wind speed data. The

results show that the improving NWP data could reflect the

actual wind speed statistical characteristics more accu-

rately. Besides, GA and PSO algorisms are, respectively,

employed to optimize the model parameters to further

improve the accuracy of the power forecasts. The perfor-

mance of GA–RVM and PSO–RVM are compared to that

of GA–ANN and SVM. Both RVM-based models outper-

form SVM and GA–ANN in terms of prediction accuracy

(by about 22 % to SVM). The full-year average RMSE of

GA–RVM is less than that of PSO–RVM in these three

cases revealing better forecasts ability of GA technique.

Meanwhile, PSO–RVM is of preference as for running

efficiency compared to that of GA–RVM which is advan-

tageous to on-line or ultra-short term operation, while GA

seems to more fit in short-term forecasting. In summary,

the improvement of the raw NWP wind speed and two

optimization techniques could enhance prediction accuracy

and practicality.
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